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Fast adaptive numerical methods for solving moving interface problems are pre-
sented. The methods combine a level set approach with frequent redistancing and
semi-Lagrangian time stepping schemes which are explicit yet unconditionally sta-
ble. A quadtree mesh is used to concentrate computational effort on the interface,
so the methods move an interface withN degrees of freedom inO(N log N) work
per time step. Efficiency is increased by taking large time steps even for parabolic
curvature flows. The methods compute accurate viscosity solutions to a wide variety
of difficult moving interface problems involving merging, anisotropy, faceting, and
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1. INTRODUCTION

Moving interface problems occur frequently in applications, involve complex topology,
merging, faceting, and curvature, and challenge standard numerical methods. We present
efficient adaptive numerical methods for solving these problems. Our methods merge and
break interfaces automatically via a level set approach with frequent redistancing. Quadtree
meshes resolve the interface with almost optimal efficiency: we move anN-element inter-
face inO(N log N)work per step. Semi-Lagrangian time stepping schemes allow large time
steps with unconditional stability. Fast redistancing algorithms maintain a robust numerical
approximation with minimal computational effort.

Section 2 of this paper defines moving interface problems and reviews the level set
approach. Section 3 discusses semi-Lagrangian time stepping schemes and summarizes
their application to level set equations on a uniform mesh. Section 4 presents the properties
of quadtree meshes that we use, and Section 5 develops our tree methods for moving
interfaces. Section 6 validates these methods with numerical examples including geometric
motions which merge faceted interfaces under anisotropic curvature-dependent velocities.
Section 7 draws conclusions and discusses future extensions and applications.

2. MOVING INTERFACES AND LEVEL SETS

This section presents standard background material on moving interface problems and
the level set approach. Subsection 2.1 defines these problems and describes examples such
as passive transport, unit normal velocity, and anisotropic curvature-dependent flow. Sub-
section 2.2 converts general moving interface problems into level set equations on a fixed
domain and reviews their solution by the level set approach.

2.1. Moving Interfaces

A general moving interface is the boundary0(t)= ∂Ä(t) of a setÄ(t) ⊂ Rd depending
on timet . If Ä is sufficiently smooth, then0(t) has an outward unit normalN and a normal
velocity V at each point, which can be calculated from standard geometric formulas found
in [23]. A moving interface problemis a closed system of equations which specifiesV
as a functional of0, possibly in a highly indirect and nonlocal way. Some representative
solutions of the following specific moving interface problems are shown in Fig. 1.

Passive transport. An interface is transported in an ambient flow which is independent
of 0. Thus a velocity fieldF(x, t) is given onRd and0(t) moves with normal velocity
V = N · F .

Unit normal velocity. The simplest geometric flow moves0(t) along its normal with
velocity V = 1. Nonconvex interfaces produce complex merging and cornering patterns
under this flow.

Anisotropic curvature-dependent velocity.A more general geometric motion has normal
velocity

V(x, t)= R+ ε cos(K θ + θ0)+ (R′ + ε′ cos(K ′θ + θ ′0))C, (1)

where cosθ = N · e1 is the cosine of the angle between the normal vector and the positive
x-axis. These velocity fields produce faceted interfaces merging in complex anisotropic
patterns and are often used as simplified models in materials science [22].
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FIG. 1. Sample moving interface problems: (a) initially circular bubbles after passive transport in a shearing
flow, (b) merging of complex interfaces with unit normal velocity, and (c) crystalline facets developing under the
threefold anisotropic curvature-dependent velocity defined in Eq. (1).
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Crystal growth. Many industrial problems involve moving interfaces between different
phases of a material. The interface between a growing solid crystalline material and its
liquid or gaseous phase, for example, has been modeled by a Stefan-type problem

ut = ∇u off 0(t) (2)

u = −εC on0(t), (3)

where the temperature fieldu is unknown and the interface0 moves with normal velocity
V equal to the jump in the normal derivative ofu. See [5] for physical background and
[13, 17, 11] for samples of the many numerical methods developed for this problem.

2.2. The Level Set Approach

The main difficulty in moving interfaces is the correct handling of merging, breaking,
and other topological changes. We can overcome this difficulty by reformulating moving
interface problems as “level set equations” on a fixed domain, using thezero set

0(t)={x ∈ Rd :ϕ(x, t)= 0} (4)

of an arbitrary functionϕ : Rd × R→ R, such as the signed distance to0(t):

ϕ(x, t) = ± min
y∈0(t)
‖x − y‖. (5)

(For example, Fig. 2 shows a hexagon in the plane and the corresponding signed distance
functionϕ.) We chooseϕ >0 inÄ(t), so the outward unit normal vector and normal velocity
are given by [23]

N = ∇ϕ/‖∇ϕ‖, (6)

V = ϕt/‖∇ϕ‖. (7)

Given an extension of the vector normal velocityV N to a functionF(x, t) on Rd, Eq. (7)

FIG. 2. The correspondence between (a) a hexagonal interface and (b) the signed distanceϕ to the interface.
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implies a partial differential equation—the “level set equation”—which moves0 by evolv-
ing ϕ:

ϕt − F · ∇ϕ=ϕt − (F · N)‖∇ϕ‖=0. (8)

Equation (8) moves every level set ofϕ with the extended velocityF , and in particular
moves the zero set0(t) with the correct velocityV N. This approach to moving interfaces
embeds the topology inϕ rather than0(t) and automatically handles merging, breaking,
and other topological changes. The moving interface problems of Subsection 2.1 can be
reformulated as the following level set equations.

Passive transport. For passive transport,F is already defined onRd and is a natural
extension ofV N. The level set equation becomes a linear hyperbolic partial differential
equation (PDE)

ϕt − F(x, t) · ∇ϕ= 0. (9)

Unit normal velocity. With N extended by Eq. (7), motion with unit normal velocity
becomes a nonlinear hyperbolic PDE

ϕt −‖∇ϕ‖=0. (10)

Curvature-dependent velocity.The velocity defined by Eq. (1) yields

ϕt − (R+ ε cos(K θ + θ0))‖∇ϕ‖= (R′ + ε′ cos(K ′θ + θ ′0))∇ · (∇ϕ/‖∇ϕ‖)‖∇ϕ‖. (11)

Here cosθ =ϕx/‖∇ϕ‖ and we have used the curvature formulaC=−∇ · N from [23].
Equation (11) is a mixed hyperbolic-parabolic PDE which is singular where∇ϕ vanishes.

The level set approach moves0(t) via the level set equation (8). An initial level set
functionϕ(x, 0)and an extended velocity fieldF are built, the level set equation (8) is solved
numerically, and the solutionϕ(x, t) is contoured when0(t) is required. The approach was
introduced in [9], and an extensive recent survey is [12]. Its main advantage is the natural
treatment of dynamic topology shown in Fig. 3.

There are some potential difficulties with the level set approach. It can be more expensive
since it goes up a dimension, particularly if uniform meshes are used. Extending the velocity
off 0(t) can be difficult. One must be careful to obtain the correct “viscosity solution” of
Eq. (8), by using an appropriate solver for the level set equation [12]. The approach is not
naturallymodular: a new code must be written for each new problem to be solved, since
the velocity evaluation is intertwined with the moving interface code by velocity extension.

Our methods combine a level set approach with an adaptive quadtree mesh and are
shown experimentally to obtain the correct viscosity solution for passive transport and
geometric problems where velocity extension is straightforward. The adaptivity of our
methods eliminates the added cost of going up a dimension. A general velocity extension
is developed and used to build general modular methods in [20].

3. SEMI-LAGRANGIAN LEVEL SET METHODS

The semi-Lagrangian level set methods introduced in [19] solve level set equations on
a uniform mesh with semi-Lagrangian time stepping schemes. The level set equations



FIG. 3. (a) Two hexagons moving with constant normal velocity grow and merge. The corresponding signed
distance function is plotted over a triangulated quadtree (see Section 4) at (b) initial and (c) final times.
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handle the dynamic topology of the moving interface, while semi-Lagrangian schemes
allow large time stepsk=O(h) even for parabolic problems like curvature flows. These
methods are robust and accurate, but the uniform mesh spends too much effort far from
the interface. We implement semi-Lagrangian level set methods on a quadtree mesh to
concentrate computational effort near the interface, attaining accuracy comparable to a
uniform mesh method at far less cost. In this section, we review the simplest semi-Lagrangian
time stepping scheme, discuss its convergence theory, and summarize the methods of [19].

3.1. The CIR Scheme

The linear hyperbolic PDE

ϕt − F(x, t) · ∇ϕ= 0 (12)

propagatesϕ values along the characteristic curvess(t) defined by

ṡ(t)=−F(s(t), t). (13)

Thus we can findϕ values at any timet by finding the characteristic curve passing through
(x, t) and following it backwards to some previous point(x0, t0) where the value ofϕ is
known: thenϕ(x, t)=ϕ(x0, t0). This observation forms the basis of the “backward char-
acteristic” or “CIR” scheme due to Courant, Isaacson, and Rees [2], which is the simplest
semi-Lagrangian scheme. Givenϕ at time tn, CIR approximatesϕ(x, tn+1) at any point
x at time tn+1= tn+ k by evaluating the velocityF(x, tn), approximating the backward
characteristic throughx by a straight line

x + (tn+1− t)F(x, tn) ≈ s(t), (14)

and interpolatingϕ linearly at timetn to the point

x + kF(x, tn) ≈ s(tn). (15)

Thenϕ(x, tn+1) is set equal to the interpolated value.
General semi-Lagrangian time stepping schemes are built along similar lines with higher-

order accurate time stepping and interpolation and are widely used in atmospheric science
[15, 14].

3.2. Convergence

For linear PDEs, the Lax–Richtmyer equivalence theorem [6] guarantees that CIR will
converge to the exact solution ask, h→ 0 if it is stable and consistent. Stability is uncon-
ditionally guaranteed since each new valueϕ(x, tn+1) is a single linearly interpolated value
of ϕ at timetn.

Consistency, however, is conditional. The truncation error of CIR is

τ = O

(
h2

k

)
+ O(k), (16)

due to theO(h2) error in linear interpolation overO(1/k) steps plus theO(k) due to
freezingF and approximating the characteristics by straight lines. Thus CIR is consistent
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to O(k) if a condition likek≥O(h) is satisfied, contrary to the usual hyperbolic condition
k≤Ch. This condition is extremely convenient, becausek=O(h) balances time and space
resolution in this first-order accurate scheme.

CIR converges for Lipschitz solutions of nonlinear PDEs but moves shock solutions of
conservation laws at the wrong speed because CIR is not in conservation form. Thus semi-
Lagrangian schemes such as CIR have been applied mainly to problems in atmospheric
science where shocks are absent. Since level set equations have no shocks, CIR is a natural
scheme for moving interfaces.

3.3. Semi-Lagrangian Level Set Methods

The semi-Lagrangian CIR scheme was applied to level set equations in [19], yielding
semi-Lagrangian level set methods on a uniform mesh. Convergence was heuristically
discussed and experimentally verified for many moving interface problems involving pas-
sive transport, geometry, dynamic topology, faceting, and curvature. Convergence of these
methods is straightforward for passive transport and first-order geometry where the level
set equation is hyperbolic. For parabolic problems such as curvature flows, the main issue
is the Courant–Friedrichs–Lewy (CFL) condition which restricts the time step of most ex-
plicit methods byk≤O(h2) to ensure information propagates correctly. Semi-Lagrangian
level set methods are unconditionally stable and can satisfy the CFL condition by nonlo-
cal velocity evaluation, permitting convergence with large time stepsk=O(h) even for
parabolic problems. While their convergence theory is still in progress, the combination
of experimental evidence with the following heuristics indicates that these methods can
converge correctly.

The domain of dependence of the CIR solutionϕ(x, tn+1) obviously includes the single
interpolation points= x+ kF(x, tn) and its stencil, but the points in turn depends on the
ϕ values used to compute the extended velocityF(x, tn). Thus the CFL condition can be
satisfied in principle by computingF nonlocally with arbitrarily large time steps. A specific
nonlocal technique which satisfies the CFL condition is to postprocess the velocity field by
smoothing or averaging it over a sufficiently large stencil. Accuracy can be maintained by
increasing stencil size only logarithmically ash→ 0. In practice, a few passes of smoothing
produces convergent solutions even though curvature flow velocities give parabolic level
set equations, for which explicit schemes usually requirek=O(h2).

Redistancing and velocity extension techniques also implement long-distance informa-
tion transfer and help satisfy the CFL condition. While these techniques propagate infor-
mation primarily normal to the interface, their influence is enhanced in regions of high
curvature because normal vectors cross near the interface.

4. QUADTREE MESHES

Moving interfaces by solving the level set equation differs from solving general PDEs
because we need to resolve the solutionϕ only near its zero set. Quadtree meshes coarsen
rapidly away from0(t) to resolve the interface with optimal efficiency and eliminate the
cost of going up a dimension. In this section, we review standard properties of quadtree
meshes. We define, build, and triangulate quadtree meshes in Subsection 4.1, then specialize
in Subsection 4.2 to develop some useful properties of quadtree meshes built to resolve a
given interface0.
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4.1. Quadtree Meshes

4.1.1. Definition

A quadtree meshcovering the cube [0, 1]d in Rd is composed of square cells organized
into levels, with each cell on levell + 1 contained in some level-l cell. A quadtree mesh
built to resolve a given functionϕ on [0, 1]d stores the following information:

• The root cellC0= [0, 1]d, which occupies levell = 0.
• A maximum depthL ≥ 0.
• A cell list of cells, grouped by level.
• A vertex listof cell vertices (corners), without repetitions.
• A vertex value listof ϕ values at cell vertices.
• Other application-dependent data.

Each cellC in the cell list contains:

• Its level l and corner vertex(i1, . . . , i d): the cell covers the box 2−l [i1, i1 + 1] ×
· · · × [i d, i d + 1].
• The indices in the vertex list of the 2d cell vertices.
• The index in the cell list of its parent (if there is one).
• The indices in the cell list of its children (if there are any).
• Other application-dependent data.

An example is shown in Fig. 4 and Table I. Given anL-level quadtree, many operations
related to searching and sorting can be done efficiently. Finding the tree cell where a point
x lies, for example, requiresO(L) checks of bits in the binary representation ofx.

4.1.2. Building the Quadtree

To build a quadtree, start with a root cell at levell = 0. Test whether it needs splitting into
2d children on levell + 1. Thesplitting criteriondistinguishes one quadtree from another
and must be specified to suit the application. If a cell needs splitting, some bookkeeping
must be done—creating new vertices, adjusting familial pointers, and so forth—and the
values ofϕ at new vertices must be found. Then the children are tested, split if necessary,
and the process repeats recursively. The build terminates when no cell above levelL requires
splitting.

TABLE I

Stored Information for the Quadtree of Fig. 4

Cell Children Parent Vertices

C0 C1,C2,C3,C4 — V0,V1,V2,V3

C1 C5,C6,C7,C8 C0 V0,V4,V5,V8

C2 — C0 V4,V1,V8,V6

C3 — C0 V5,V8,V2,V7

C4 — C0 V8,V6,V7,V3

C5 — C1 V0,V9,V10,V13

C6 — C1 V9,V4,V13,V11

C7 — C1 V10,V13,V5,V8

C8 — C1 V13,V11,V12,V8
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FIG. 4. Levels 0, 1, and 2 of a tree structure with cellsCi and verticesVi .

4.2. Properties

This paper uses three different quadtrees, each built to resolve some interface0 with
some version of the following splitting criterion:

Split any cell whose edge length exceeds its minimum distance to0. (17)

Variants of this criterion determine the quadtree mesh at each time step, initialize the level set
functionϕ and redistanceϕ at each step. This splitting criterion is one ingredient in the fast
redistancing algorithm of [18], which we use in Section 5. The other ingredient is an efficient
guaranteed-correct search strategy which uses a quadtree mesh to find nearest points on0.
Infinite quadtrees built with Criterion (17) are known as Whitney decompositions and used
to solve extension problems in harmonic analysis [16].

If ϕ is the signed distance to0, then the values ofϕ stored at cell vertices make this
criterion extremely simple to implement. Figure 5 shows the cells in a quadtree for a simple
interface. In general, Criterion (17) builds quadtrees with several useful properties:

• Adjacent cells differ in size by no more than a factor of 2, producing a smooth mesh
and simplifying procedures such as neighbor finding and triangulation of the vertices.
• A cell’s size is proportional to its distance to0.
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FIG. 5. The eight-level quadtree mesh built around the hexagonal zero set of Fig. 2.

• If ϕ is the signed distance to0 at vertices and we extendϕ into each cell byd-
linear interpolation, then—because cells vary in size—ϕ will be discontinuous; see Fig. 6.
However, the jumps inϕ decrease in size in cells close to the interface because of the triangle
inequality. Thus the interpolatedϕ is close to continuous near0.

FIG. 6. The piecewise bilinear interpolantϕ to the signed distance function on the eight-level quadtree mesh
of Fig. 6.
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• Cells coarsen very rapidly away from the interface: if there areN childless cells
touching0, then the entire tree contains onlyO(N) cells. Hence0 is resolved accurately
at minimal cost.

5. TREE METHODS FOR MOVING INTERFACES

We develop tree methods which move interfaces by combining the following ideas:

◦ Topological changes require the solution of the level set equation only locally near
the interface, not globally in space.
◦ The interface can be accurately resolved at optimal cost by a quadtree mesh.
◦ Semi-Lagrangian time stepping schemes such as CIR decouple time steps from

CFL conditions, permitting time steps determined by resolution requirements rather than
numerical stability.
◦ Semi-Lagrangian schemes decouple mesh points into independent computations,

permitting adaptive refinement without iteration.
◦ With frequent redistancing, the solutionϕ of the level set equation is close to a signed

distance function at all times, giving a natural splitting criterion for building a quadtree mesh
and making error estimation unnecessary.

The combination of these ideas yields a family of adaptive methods. We summarize this
family, identify the options which parametrize it, and discuss them in detail below.

In Subsection 5.1, we initialize the solutionϕ of the level set equation: given an initial
interface0=0(0), we build a quadtreeQ0 and an approximate signed distance function
ϕ0 on Q0 which resolves0 to specified accuracyε in almost optimal time and space.

After initializing, we evolve the interface one step at a time. Optionallyϕ may be redis-
tanced before the time step, as discussed in Subsection 5.2. Given a quadtreeQn resolving
the zero set0n ofϕn≈ϕ(tn), and an extended velocityFn equal to the vector normal velocity
V N on0n, we build a quadtreeQn+1 to resolve the zero set0n+1 of the CIR approximation

ϕn+1(x)=ϕn(x + kFn(x)). (18)

Computingϕn+1 involves four procedures: extension, resolution, interpolation, and appli-
cation of boundary conditions.

Extension. Extend the vector normal velocityV N off the interface to a global function
Fn(x) on the meshQn. This extension problem can be solved in general or tailored to a
specific moving interface problem. We discuss some specific techniques for passive trans-
port and geometry in Subsection 5.3: local and global extensions, smoothing, truncation,
interpolation, and differentiation on uniform and adaptive meshes. A general extension
technique is developed in [20].

Resolution. Apply the splitting criterion of Subsection 5.4: form a quadtreeQn+1 re-
solving the zero set0n+1 of the CIR approximationϕn+1 from Eq. (18) to specified ac-
curacyε.

Interpolation. At off-mesh pointss= x+ kFn(x), our interpolation strategy determines
stability as well as accuracy and is detailed in Subsection 5.5.

Boundary conditions. Numerical boundary conditions are straightforward and discussed
in Subsection 5.6.
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5.1. Initialization

A moving interface computation begins with the initial interface00=0(0), while the
level set equation requires an initial level set functionϕ0=ϕ(0) with zero set00. The
signed distance function

D(x) = ±min
y∈0
‖x − y‖ (19)

is prohibitively expensive to compute directly: If

0 =
N⋃

i=1

[γi , γi+1]

is a polygonal curve inR2, then evaluating

D(x) = ± N
min
i=1

min
y∈[γi ,γi+1]

‖x − y‖

costsO(N)work per evaluation. We initializeϕ0 efficiently by building a quadtreeQ0 with
Criterion (17), settingϕ0= D at the vertices ofQ0 and on cells touching00, and inter-
polatingϕ0 linearly on cells not touching00.

As noted in Subsection 4.2, this splitting criterion produces a mesh which coarsens so
rapidly away from0 that if there areN cells touching0, then the entire mesh contains only
O(N) cells. Thus if0 hasN elements, then direct evaluation of all the quadtree vertex values
costs onlyO(N2)work, much less than theO(Nd+1) for evaluatingϕ on a uniform mesh in
d dimensions. FasterO(N log N) redistancing algorithms are discussed in Subsection 5.2.

5.2. Redistancing

Moving interfaces by solving the level set equation differs from solving a general PDE,
because we can ignore all values ofϕ far from the zero set. In particular, we can replace the
solution at any time by an approximate signed distance with the same zero set.

Frequent redistancing improves numerical accuracy. Figure 7 plotsϕ for a circle growing
with unit normal velocityV = 1, computed by the method of [19]. The solutionϕ satisfies a
maximum principle, so maxima can never increase. However, this also leads to flattening of
the level set function:∇ϕmay become small near the interface, causing level sets to broaden
into regions or become difficult to contour. Redistancing cures flattening completely and
reestablishes a clean intersection between theϕ surface and any horizontal plane. Also,
redistancing eliminates numerical effects due to artificial boundaries.

Redistancing is equivalent to initialization once0 is found, and many contouring tech-
niques which find0 are available. The simplest technique splits each cell into two triangles,
finds the exact zero segment of the linear interpolant toϕ on each triangle, then joins the
segments to form the interface. The choice of cell splitting direction makes this contour-
ing technique anisotropic and helps indicate errors: underresolved computations can signal
error by displaying a directional bias.

A fast algorithm which computes an approximate signed distanceϕ0 at the quadtree
vertices inO(N log N) work was developed in [18]. It uses an efficient search strategy
to compute the minimum distance from all vertices of the quadtree to0 and runs fast
enough to redistance at every time step. Other fast redistancing algorithms apply the eikonal



FIG. 7. Flattening of the level set function for a circle moving with constant normal velocity. Initialϕ (a),
final ϕ without redistancing (b), and finalϕ with occasional redistancing (c).
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equation [21] and heapsort techniques [1], primarily on a uniform mesh. A polygonal
interface made ofN line segments has a “Voronoi diagram” which can be computed in
O(N log N) time [26] and solves the redistancing problem exactly. However, the constant
in O(N log N) is large and the algorithm is complex to program. A simpler structure called
the compact Voronoi diagram may lead to faster redistancing algorithms [7], though at
present no implementation is available.

5.3. Extension

Level set methods require a globally defined velocityF which extendsV N smoothly off
the interface0(t). Many ad hoc velocity extensions for specific problems are described in
[12], while general extension techniques are developed in [1, 20, 21].

Our tree methods also require velocity extension. The test problems solved in Section 6
have natural velocity extensions: for passive transportF is given, while geometric velocities
such as

F = (R+ ε cos(K θ + θ0))N + (R′ + ε′ cos(K ′θ + θ ′0))C N (20)

can be evaluated by the natural geometric formulasN=∇ϕ/‖∇ϕ‖ andC=−∇ · N. For
more general problems, we plan to incorporate the general extension of [20].

Naturally extended geometric velocities produce two numerical difficulties. First, the
exact solutionϕ is not differentiable when facets or corners develop,∇ϕ vanishes at extrema
soN andC are not defined there, and redistancing on a quadtree introduces discontinuities
as well. Our approximate signed distance function is discontinuous when cells change size,
though the jumps decrease steadily in size as we approach0.

The second difficulty is the CFL condition, which requires small time stepsk=O(h2)

in almost all explicit schemes for parabolic level set equations such as curvature flow. The
CIR scheme on a uniform mesh converges with a much more efficient time stepk=O(h)
provided that the CFL condition is satisfied by smoothing the velocity and redistancingϕ fre-
quently [19]. Hence convergence for curvature-dependent velocities will require smoothing
and frequent redistancing.

We have developed both cell-based and grid-based schemes for evaluating geometric ve-
locities. Cell-based schemes are fast and work well for problems with first-orderϕ deriva-
tives, while grid-based schemes are slower, more general, and work well for curvature-
dependent velocities. We describe these approaches below.

5.3.1. Cell-Based Velocity Evaluation

The cell-based approach computes geometric velocitiesFn(x) locally at each new tree
vertexx in Qn+1. Supposex lies in a cellC of the old quadtreeQn. Then we can form the
bilinear interpolantB to the vertex values ofϕ and approximate∇ϕ by∇B on C. Second
derivatives can be computed by iterating the interpolation, or by using the biquadratic
interpolantQ to the nineϕ values at vertices ofC and its siblings.Q raises the order of
accuracy by one but doubles the cell size and introduces a stability issue: for linear constant-
coefficient problems in one space dimension, CIR is unstable with quadratic interpolation.

We can vary this technique by computing the velocity at all vertices of the old quadtree
Qn and interpolating it to the new tree vertices. Smoothing techniques can then be applied
because the velocity is computed on the whole quadtree rather than piecemeal and permit
more effective solution of parabolic problems.
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5.3.2. Grid-Based Velocity Evaluation

We can evaluate geometric velocities with an auxiliary grid by the following procedure:
build a uniform 2L × 2L grid matching the smallest cell in the quadtree. Interpolateϕ

to the uniform grid by the cell-based bilinear interpolation of Subsection 5.5.1, which is
exact at vertices shared by the quadtree and the uniform grid. Apply the standard grid-based
techniques of smoothing and differentiatingϕ, truncating and smoothingF on the grid, as in
the geometric velocity evaluation of [19]. Finally, restrictF to the quadtree vertices, which
form a subset of the uniform grid. This approach is powerful and general, but costly because
of the uniform grid. However, the cost can be reduced by masking off unneeded areas.

5.4. Resolution

At each step, our methods build a quadtree mesh to resolve the CIR approximation

ϕn+1(x) = ϕn(x + kFn(x)) (21)

to the level set functionϕ(x, tn+1). The quadtree is built recursively from the root cellC0

by the following splitting criterion:

Split every cell where|ϕn+1| is larger than the edge length. (22)

Thus we apply the splitting criterion (17) as ifϕn+1 were a distance function. Redistancing
at every step keeps

ϕn+1(x)=ϕn + kF · ∇ϕn + o(k)=ϕn + O(k) (23)

within O(k) of the signed distance functionϕn. Thus in the limitk=O(h)→ 0, Criterion
(22) reduces to (17), yielding the properties noted in Subsection 4.2.

5.5. Interpolation

The CIR scheme requires interpolatedϕ values at the projected pointss= x + kFn(x).
Many general interpolation techniques are available, but our choice is restricted by the
irregularity of the quadtreeQn and by two requirements. First, the level set functionϕ is
only Lipschitz continuous in general since faceting may occur. Thus high-order methods
which require smooth data should be avoided. Second, stability of the semi-Lagrangian
approach in any given norm is guaranteed only for interpolation schemes which do not
increase the norm too much. For example, linear interpolation was used in [19] to guarantee
unconditional max-norm stability. Similarly, shape-preserving interpolation [10] was used
in [24] and monotone advection in [14].

Given these two requirements and a quadtree mesh, two obvious classes of interpolation
techniques are available: cell-based and triangulation-based. Both become locally exact by
settingϕ equal toD near0(t).

5.5.1. Cell Interpolation

Here we use the square cells of the quadtree to interpolate from vertex values ofϕ.
Bilinear interpolation to a point(x, y)= (x0+ αh, y0+ βh) in a cellC evaluates

(1− α)(1− β)ϕ00+ α(1− β)ϕ10+ (1− α)βϕ01+ αβϕ11, (24)
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where the vertex values forC are given byϕi j =ϕ(x0+ ih, y0+ jh). Bilinear interpolation
preserves the maximum principle of the CIR scheme and yields local second-order accuracy,
with global first-order errorO(k+ h) after O(1/k) time steps.

Biquadratic cell interpolation requires nineϕ values while a cellC has only four vertices.
Hence givenx in a childless cell, we can ascend one level to interpolate from the nine vertices
of C and its siblings. This gains an order of accuracy but doubles the mesh size and sacrifices
the maximum principle.

5.5.2. Triangle Interpolation

We can also interpolate by triangulating the vertices of the quadtree and building the con-
tinuous piecewise-linear interpolant toϕ at the vertices. As in [3], we can add one Steiner
vertex at the center of each cell and connect the vertices to form a high-quality triangulation
in only O(N) work. The center values ofϕ may be evaluated exactly or interpolated from
vertices.

5.5.3. Exact Interpolation

A third alternative uses the quadtree to evaluate the signed distance to0n exactly, elimi-
nates interpolation entirely, and is discussed in [20].

5.6. Boundary Conditions

The CIR scheme requires numerical boundary conditions to specify values forϕ(s, tn)
whens lies outside the domainD covered by the grid.

There are two simple boundary conditions: extension and projection. In extension, we
extendϕ as a constant or linear function along lines normal to the boundary∂D then apply
our standard interpolation scheme to interpolate the extended values tos. In projection, we
arrests as it leaves the domain and use one-sided interpolation to the point wheres crosses
∂D. Our tree methods use projection because it is simple and effective.

6. NUMERICAL RESULTS

We validate our tree methods by computing a variety of interfaces moving under passive
transport and geometric motions, with corners, anisotropy, nontrivial topology, and curva-
ture. (Some PDE-type examples with a general velocity extension will be treated in future
work [20].) Our methods were implemented in Standard C, compiled with the SunSoft C
compiler and the-fast optimization flag, and run on one CPU of a 2-CPU 200 MHz Sun
Ultra-2 under Solaris 2.6.

6.1. Passive Transport

Passive transport problems where0(t) moves with a globally defined velocityF(x, t)
constitute convenient test cases for moving interface methods, because complex exact so-
lutions can easily be evaluated. Thus we can measure the error and rate of convergence. We
carry out convergence studies for three passive transport problems and verify the accuracy,
robustness, and conservation properties of tree methods.
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FIG. 8. A collection of bubbles moving with linear shearing velocity.

6.1.1. Bubbles in a Shear Flow

We measure the accuracy of our methods on a collection of circular bubbles (Fig. 8)
moving with a divergence-free linear shearing velocity

F(x, y) = 1

2

(
x − 3y+ 1,−y− 1

2

)
. (25)

We use 10, 20, . . . ,320 time steps on 0≤ t ≤ 1 on a quadtree with 5 through 9 levels on
[−5, 5]× [−5, 5]. Table II reports the maximum of the exact distance function on the com-
puted contour at timet = 1. First-order accuracy is clearly evident along diagonals, where
h=O(k). This agrees with the consistency condition of Subsection 3.2. The error decreases
considerably when we change from bilinear to biquadratic cell interpolation, indicating that
the error is largely due to spatial discretization.
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TABLE II

Grid levels NT = 10 20 40 80 160 320

Linear interpolation
5 0.276 0.139 0.631 0.96 0.36 0.567
6 0.0413 0.169 0.253 0.135 0.176 0.457
7 0.031 0.027 0.0986 0.194 0.269 0.209
8 0.0449 0.0148 0.0143 0.054 0.112 0.222
9 0.0479 0.0221 0.00686 0.0102 0.0384 0.0831

Quadratic interpolation
5 0.0423 0.12 0.283 0.345 0.338 0.341
6 0.0398 0.0267 0.0351 0.0518 0.0378 0.0352
7 0.0468 0.0227 0.00982 0.0128 0.0208 0.0239
8 0.0486 0.0236 0.0116 0.00565 0.00145 0.00396
9 0.0489 0.0241 0.0118 0.00593 0.00298 0.00118

Note.Maximum error att = 1 in the interface shown in Fig. 8, moving with divergence-free linear shearing
velocity F(x, y)= 1

2
(x − 3y + 1,−y − 1

2
), computed withNT time steps of linear and quadratic interpolation.

The domain is [−6, 6]2.

6.1.2. Grid Effects on Triangles

A common difficulty in moving interfaces is sensitive dependence on numerical artifacts
such as grid orientation. We check for grid effects in passive transport of a sharply faceted
interface by revolving, shrinking, and expanding a triangle with a linear velocity field. In all
cases, each facet moves with the appropriate speed independently of its orientation relative
to the grid. Figure 9 plots the results with both bilinear and biquadratic cell interpolation
on the domain [−2, 2]2 and shows that grid effects are minimal. Each plot demonstrates
convergence by superimposing three runs with 40, 80, and 160 time steps on a quadtree
with 5, 6, and 7 levels.

6.1.3. Mass Conservation in a Shear Flow

We conclude our study of passive transport by measuring mass conservation in a collection
of bubbles moving in the divergence-free shearing flow given by

F(x, y)= max(1− (1− x2− y2)4+, 0)
8(x2+ y2)

(−y, x). (26)

Figure 10 shows the extreme distortion produced by this flow, computed with 160 time steps
on 0≤ t ≤ 100 and bilinear interpolation on a 9-level quadtree on the domain [−6, 6]2. This
mesh resolves0(t) as accurately as a 512×512 uniform mesh, at far less cost. Despite this
distortion, mass is well conserved; the final area inside the computed interface is 12.7701,
close to the exact value of 4π = 12.5664.

6.2. Geometry

We validate our methods by computing converged solutions to a variety of geometric
moving interface problems including viscosity solutions to corners moving with unit normal
velocity, the faceted Wulff limit for anisotropic normal velocity fields, complex topological
changes under anisotropic curvature-dependent flows, and nonconvex shapes shrinking to
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FIG. 9. Tests of grid effects in sharp corners with linear velocity field. (a) A rotating triangle at a half period
and a full period, computed with bilinear cell interpolation. (b) A triangle shrinking withV(x, y)=− 5

2
(x, y) from

t = 0 to t = 1. (c) A triangle expanding withV(x, y)= 2(x, y) from t = 0 to t = 1. Plots (d) through (f) show the
same calculation with biquadratic cell interpolation.
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FIG. 10. A collection of circular bubbles passively transported by a divergence-free shearing velocity.

round points under flow by curvature. These are among the most important tests of general
moving interface methods.

6.2.1. Unit Normal Velocity

We verify first-order accuracy on a unit circle centered at(1/2π, 1/2π)with unit normal
velocity, extended naturally via Eq. (6) with singularities truncated;

F = N= ∇ϕ
max(10−8, ‖∇ϕ‖) . (27)
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FIG. 11. Viscosity solutions for triangles moving with positive or negative unit normal velocity, computed
with bilinear cell interpolation: (a) An expanding triangle at zero angle to the mesh, with round corners. (b) An
expanding triangle at angle 0.2 radians to the mesh, with round corners. (c) A shrinking triangle at angle 0.2
radians to the mesh, with sharp corners. Plots (d) through (f) show the same computations with biquadratic cell
interpolation. Each plot demonstrates convergence by superimposing three runs with 40, 80, and 160 time steps
on tree meshes with 6, 7, and 8 levels.
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Table III reports the maximum of the exact distance function on the computed contour at
time t = 1, with 10, 20, . . . ,160 time steps on 0≤ t ≤ 1 and quadtrees with 5 through 9
levels on [−3, 3]2. Bilinear and biquadratic interpolation are used forϕ interpolation and
the cell-based evaluation ofN. High accuracy is evident along diagonals, whereh=O(k),
because the exact interface is a linear function oft .

6.2.2. Viscosity Solutions with Corners

Correct computation of “viscosity solutions” for faceted interfaces in geometric problems
depends on moving a corner in or out with unit normal velocity [12]. Inward motion should
keep corners sharp (the “shock” case), while outward motion should produce rounded
corners due to Huygens’ principle (the “rarefaction” case). Figure 11 shows a triangle
moving with positive and negative unit normal velocity, both aligned with the mesh and at
an angle to check for grid effects, and demonstrates that tree methods compute the correct
viscosity solution in each case.

FIG. 12. A collection of randomly located, sized, and oriented trefoils growing and merging under unit normal
velocity V = 1. Here (a) is the initial interface on a 6-level tree mesh, (b) plots every 8th step of 80 time steps,
and (c) shows the final 6-level mesh. Plots (d)–(f) show 7 levels and 160 steps, while (g)–(i) show an accurately
converged result with 8 levels and 320 steps.
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FIG. 12—Continued
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FIG. 13. Wulff shapes growing from circular initial interfaces (with radius 1/2 and center at(1/2π, 1/2π)).
Here we used 160 time steps on 0≤ t ≤ 1 and cell-based bilinear interpolation on an 8-level tree mesh covering
[−3, 3]2.

FIG. 14. Wulff shapes developing from nonconvex initial interfaces given byr = 0.4+ 0.2 cos(5ξ) in polar
coordinates(r, ξ) centered at(1/2π, 1/2π). Here we used 160 time steps on 0≤ t ≤ 1 and cell-based bilinear
interpolation on an 8-level tree mesh covering [−3, 3]2.
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FIG. 15. A collection of randomly located, sized, and oriented trefoils growing and merging under a nonconvex
anisotropic normal velocityV = 2+ cos(3θ + 0.3). We used biquadratic cell interpolation with (a) 80 time steps
on a 6-level tree mesh, (b) 160 steps on a 7-level mesh, and (c) 320 steps on a 8-level mesh, to achieve convergence
to graphical accuracy.
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FIG. 16. Convergence of two circles collapsing under curvature flowV =C, computed fromt = 0 to t = 2
with (a) 20 time steps on 5-level tree mesh covering [−4, 5]2 with 1 smoothing pass per step, superimposed on
40 steps on 6-level mesh with 2 passes, (b) 80 steps on 7-level mesh with 3 passes, superimposed on 160 steps on
8-level mesh with 4 passes.

Figure 12 shows a complex interface growing and merging with unit normal velocity and
exhibits the simplicity of the level set approach to topological complexity. The manifold
corners and changes of topology are computed automatically and easily. In particular,
outward-moving inward-pointing corners remain correctly sharp, as the viscosity solution
theory requires. The final area enclosed by the computed interface is 72.77, 73.15, and 73.29
on the three runs shown, indicating smooth monotone convergence. The initial and final
quadtrees are shown to demonstrate the extreme concentration of computational effort near
the moving interface. An 8-level mesh resolves the interface as accurately as a 256× 256
uniform mesh at far less cost.

TABLE III

Grid levels NT = 10 20 40 80 160

Linear interpolation
5 0.0307 0.0436 0.0505 0.054 0.0557
6 0.00647 0.0153 0.0215 0.0249 0.029
7 0.00135 0.00333 0.00981 0.0133 0.0155
8 0.000506 0.000707 0.00201 0.00675 0.00938
9 0.000123 0.00026 0.000447 0.00155 0.00505

Quadratic interpolation
5 0.00176 0.00199 0.00223 0.00234 0.00242
6 0.000377 0.000626 0.000754 0.000819 0.000858
7 0.0000754 0.000128 0.000198 0.000239 0.000263
8 0.0000128 0.0000701 0.0000206 0.0000386 0.000051
9 0.00000401 0.00000402 0.00000256 0.00000562 0.00000978

Note.Maximum of exact distance function att = 1 on a circle of radiusR(t)= 1+ t and center(1/2π, 1/2π),
moving with constant normal velocityV = 1, computed withNT time steps of linear and quadratic interpolation.



FIG. 17. Convergence of a collection of trefoils to round points under curvature flowV =C, computed from
t = 0 to t = 1 with grid-based velocity evaluation using (a) 40 time steps on a 6-level tree mesh covering [−4, 4]2

with one smoothing pass per step, (b) 80 steps on a 7-level mesh with two passes, (c) 160 steps on a 8-level mesh
with three passes.

643
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6.2.3. Anisotropic Normal Velocity and the Wulff Limit

Anisotropic motion along the normal connects moving interfaces to the theory of
Hamilton–Jacobi equations

ϕt + H(∇ϕ)= 0 (28)

which encounters difficulties when the HamiltonianH is nonconvex. For anisotropic normal
velocities

V = R+ ε cos(kθ), cosθ =ϕx/‖∇ϕ‖, (29)

the Hamiltonian is nonconvex if

R+ ε(1− k2) < 0< R− |ε|, (30)

causing some Hamilton–Jacobi methods to break down.
In Fig. 13, we evolve an initially circular interface under several anisotropic normal veloci-

ties producing nonconvex Hamiltonians, with constants chosen to keepR+ ε(1− k2)=−4.

FIG. 18. Nonconvex shapes merging under curvature-dependent anisotropic flowV = 2+ cos(3θ + 0.3)
+ εC. Convergence to the viscosity solution asε → 0 is demonstrated withε= 1 (a–c), 0.1 (d–f), and 0.01
(g–i). Figure 15 shows the limit caseε= 0.
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FIG. 18—Continued

The interface converges rapidly to the correctly tilted “Wulff shape” [25] corresponding
to each given anisotropy, as predicted by rigorous theory [8]. In Fig. 14, we begin with a
highly nonconvex initial interface to test our methods even more severely. The asymptotic
Wulff shape is still computed accurately.
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6.2.4. Merging under Anisotropy

Starting from a collection of randomly placed, sized, and oriented trefoil shapes, we move
the interface along its normal with a threefold anisotropic speedV = 2+ cos(3θ + 0.3),
whereθ is the angle between the normal vector and the positivex-axis. Figure 15 shows
the mechanism which transforms this highly nonconvex initial interface into the asymptotic
triangular Wulff shape ast →∞.

6.2.5. Circles Shrinking under Curvature

A classic geometric problem shrinks a plane curve with velocity equal to its curvature
and forms a useful test case for curvature-dependent velocity. A circle shrinking with
V =C has exact radiusR(t)=

√
R(0)2− 2t , so withR(0)=√5, a circle should shrink to

radius 1 at timet = 2. A smaller circle withR(0)= 1 vanishes completely in timet = 1/2.
Figure 16 shows convergence to graphical accuracy, computed with 20, 40, 80, 160 time
steps on quadtrees with 5 through 8 levels and plotted every 0.2 or 0.1 time units. The
final computed area of the large circle is 2.518, 2.849, 3.007, and 3.088, showing a smooth
first-order convergence to the exact areaπ .

For this parabolic problem, we use grid-based velocity evaluation with redistancing every
step to satisfy the CFL condition and obtain convergence with large time stepsk=O(h).
We applyL − 4 passes of cosine smoothing on theL-level mesh computation.

6.2.6. Nonconvex Interfaces under Curvature

A geometric theorem [4] predicts that any smooth embedded plane curve should collapse
to a round point and vanish in finite time under curvature flowV =C. We verify that tree
methods behave correctly for a collection of randomly placed, sized and oriented nonconvex
trefoil shapes, with the converged calculation shown in Fig. 17.

6.2.7. Merging under Anisotropy Plus Curvature

Finally, we validate our methods by computing the viscosity limit for a complex interface
evolving through merging, fill-in, and faceting. Beginning as in Fig. 15, we move0(t)with
a curvature-smoothed velocity

V = 2+ cos(3θ + 0.3)+ εC. (31)

We illustrate the viscosity limitε → 0 computationally withε= 1, 0.1, and 0.01. For each
value ofε, we carry out a numerical convergence study with grid-based velocity evaluation,
redistancing and smoothing at each step. Figure 18 shows rapid convergence to the results
computed in Fig. 15.

7. CONCLUSION

We have described and validated new adaptive numerical methods for moving interfaces,
which combine the level set equation, the semi-Lagrangian CIR time stepping scheme, and
quadtree meshes. Our tree methods resolve and move complex interfaces at optimal cost
with time steps unconstrained by numerical stability. They form key components of “black-
box” methods for moving interfaces, which accept the interface and its velocity at timet
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and return the evolved interface one time step later. Such methods simplify the solution of
moving interface problems, because the moving interface numerics are independent of the
physical problem driving the interfacial motion.

Numerical results show that tree methods converge to correct viscosity solutions even for
difficult moving interface problems involving merging, faceting, transport, and anisotropic
curvature-dependent geometry. Large time steps can be taken even for parabolic problems,
with the aid of frequent redistancing and velocity smoothing.

Planned future developments include

• further investigation of CFL conditions for parabolic problems,
• higher-order accurate time stepping,
• completely modular moving interface methods [20], and
• applications to industrial crystal growth problems, where the moving interface is

coupled to complex materials science.
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