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Fast adaptive numerical methods for solving moving interface problems are pre-
sented. The methods combine a level set approach with frequent redistancing and
semi-Lagrangian time stepping schemes which are explicit yet unconditionally sta-
ble. A quadtree mesh is used to concentrate computational effort on the interface,
so the methods move an interface withdegrees of freedom i@ (N log N) work
per time step. Efficiency is increased by taking large time steps even for parabolic
curvature flows. The methods compute accurate viscosity solutions to a wide variety
of difficult moving interface problems involving merging, anisotropy, faceting, and
curvature. © 1999 Academic Press
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1. INTRODUCTION

Moving interface problems occur frequently in applications, involve complex topolog
merging, faceting, and curvature, and challenge standard numerical methods. We pre
efficient adaptive numerical methods for solving these problems. Our methods merge
break interfaces automatically via a level set approach with frequent redistancing. Quac
meshes resolve the interface with almost optimal efficiency: we mow-alement inter-
face inO(N log N) work per step. Semi-Lagrangian time stepping schemes allow large tir
steps with unconditional stability. Fast redistancing algorithms maintain a robust numer
approximation with minimal computational effort.

Section 2 of this paper defines moving interface problems and reviews the level
approach. Section 3 discusses semi-Lagrangian time stepping schemes and summ
their application to level set equations on a uniform mesh. Section 4 presents the prope
of quadtree meshes that we use, and Section 5 develops our tree methods for mc
interfaces. Section 6 validates these methods with numerical examples including geom
motions which merge faceted interfaces under anisotropic curvature-dependent veloci
Section 7 draws conclusions and discusses future extensions and applications.

2. MOVING INTERFACES AND LEVEL SETS

This section presents standard background material on moving interface problems
the level set approach. Subsection 2.1 defines these problems and describes example
as passive transport, unit normal velocity, and anisotropic curvature-dependent flow. ¢
section 2.2 converts general moving interface problems into level set equations on a f
domain and reviews their solution by the level set approach.

2.1. Moving Interfaces

A general moving interface is the boundart) = 3Q (t) of a setQ2(t) ¢ RY depending
on timet. If Q is sufficiently smooth, thefi(t) has an outward unit norma&l and a normal
velocity V at each point, which can be calculated from standard geometric formulas fol
in [23]. A moving interface probleris a closed system of equations which specifies
as a functional of”, possibly in a highly indirect and nonlocal way. Some representati
solutions of the following specific moving interface problems are shown in Fig. 1.

Passive transport. An interface is transported in an ambient flow which is independel
of I". Thus a velocity fieldF (x, t) is given onRY andI'(t) moves with normal velocity
V=N-F.

Unit normal velocity. The simplest geometric flow movéyt) along its normal with
velocity V = 1. Nonconvex interfaces produce complex merging and cornering patte
under this flow.

Anisotropic curvature-dependent velocityA more general geometric motion has normal
velocity

V(x,t) =R+ e cogKb + 6p) + (R + €' cogK'0 + 67))C, 1)

where co® = N - g is the cosine of the angle between the normal vector and the positi
x-axis. These velocity fields produce faceted interfaces merging in complex anisotrc
patterns and are often used as simplified models in materials science [22].
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b

FIG. 1. Sample moving interface problems: (a) initially circular bubbles after passive transport in a shear
flow, (b) merging of complex interfaces with unit normal velocity, and (c) crystalline facets developing under t
threefold anisotropic curvature-dependent velocity defined in Eq. (1).
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Crystal growth. Many industrial problems involve moving interfaces between differer
phases of a material. The interface between a growing solid crystalline material anc
liquid or gaseous phase, for example, has been modeled by a Stefan-type problem

U = Vu off I'(t) 2
u=—eC onT(1), 3)

where the temperature fieldis unknown and the interfade moves with normal velocity
V equal to the jump in the normal derivative of See [5] for physical background and
[13, 17, 11] for samples of the many numerical methods developed for this problem.

2.2. The Level Set Approach

The main difficulty in moving interfaces is the correct handling of merging, breakini
and other topological changes. We can overcome this difficulty by reformulating movi
interface problems as “level set equations” on a fixed domain, usirzgtioeset

I ={x € R:p(x,t)=0} @)
of an arbitrary functiorp : RY x R — R, such as the signed distancelt():
(. 1) = £ min Ix - yl. ®)

(For example, Fig. 2 shows a hexagon in the plane and the corresponding signed dist
functiong.) We choose > 0in 2 (1), so the outward unit normal vector and normal velocity
are given by [23]

N = Vg/|Vel, (6)
V =¢/lIVol. (7)

Given an extension of the vector normal velodit\ to a functionF (x, t) onR?, Eq. (7)

FIG. 2. The correspondence between (a) a hexagonal interface and (b) the signed gisatieeinterface.
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implies a partial differential equation—the “level set equation"—which mavey evolv-
ing ¢:

¢t —F-Vo=g¢ — (F-N)|Vg| =0. (8)

Equation (8) moves every level set gfwith the extended velocity, and in particular
moves the zero sét(t) with the correct velocity N. This approach to moving interfaces
embeds the topology ip rather than"(t) and automatically handles merging, breaking,
and other topological changes. The moving interface problems of Subsection 2.1 cal
reformulated as the following level set equations.

Passive transport. For passive transporE is already defined oRY and is a natural
extension ofV N. The level set equation becomes a linear hyperbolic partial differenti
equation (PDE)

o —F(X, 1) - Ve =0. 9)

Unit normal velocity. With N extended by Eg. (7), motion with unit normal velocity
becomes a nonlinear hyperbolic PDE

¢t — IVl =0. (10)
Curvature-dependent velocityThe velocity defined by Eq. (1) yields
@t — (R+ecosKO + 600) Vol = (R + € cogK'0 + )V - (Vo/IIVe D IVel. (11)

Here co® = ¢« /|| V| and we have used the curvature form@a= —V - N from [23].
Equation (11) is a mixed hyperbolic-parabolic PDE which is singular wigr@anishes.

The level set approach mov&st) via the level set equation (8). An initial level set
functiong(x, 0) and an extended velocity fieklare built, the level set equation (8) is solved
numerically, and the solutiop(x, t) is contoured whei' (t) is required. The approach was
introduced in [9], and an extensive recent survey is [12]. Its main advantage is the nat
treatment of dynamic topology shown in Fig. 3.

There are some potential difficulties with the level set approach. It can be more expen
since itgoes up a dimension, particularly if uniform meshes are used. Extending the velo
off I'(t) can be difficult. One must be careful to obtain the correct “viscosity solution”
Eq. (8), by using an appropriate solver for the level set equation [12]. The approach is
naturallymodular. a new code must be written for each new problem to be solved, sin
the velocity evaluation is intertwined with the moving interface code by velocity extensic

Our methods combine a level set approach with an adaptive quadtree mesh anc
shown experimentally to obtain the correct viscosity solution for passive transport ¢
geometric problems where velocity extension is straightforward. The adaptivity of ¢
methods eliminates the added cost of going up a dimension. A general velocity exten:
is developed and used to build general modular methods in [20].

3. SEMI-LAGRANGIAN LEVEL SET METHODS

The semi-Lagrangian level set methods introduced in [19] solve level set equations
a uniform mesh with semi-Lagrangian time stepping schemes. The level set equat



a

S

AR AN L
7
4

FIG. 3. (a) Two hexagons moving with constant normal velocity grow and merge. The corresponding sig
distance function is plotted over a triangulated quadtree (see Section 4) at (b) initial and (c) final times.
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handle the dynamic topology of the moving interface, while semi-Lagrangian schen
allow large time stepk& = O(h) even for parabolic problems like curvature flows. These
methods are robust and accurate, but the uniform mesh spends too much effort far 1
the interface. We implement semi-Lagrangian level set methods on a quadtree mes
concentrate computational effort near the interface, attaining accuracy comparable
uniform mesh method at far less cost. In this section, we review the simplest semi-Lagran
time stepping scheme, discuss its convergence theory, and summarize the methods of

3.1. The CIR Scheme
The linear hyperbolic PDE

o —FX, 1) - V=0 (12)
propagates values along the characteristic curggs) defined by
8(t) = —F(s(t), ). (13)

Thus we can fin@ values at any timé by finding the characteristic curve passing througt
(x, t) and following it backwards to some previous poirg, to) where the value op is
known: theng(X, t) = ¢(Xo, to). This observation forms the basis of the “backward char
acteristic” or “CIR” scheme due to Courant, Isaacson, and Rees [2], which is the simp
semi-Lagrangian scheme. Givenat timet,, CIR approximates (X, tn,1) at any point

X at timet, 1 =t, +k by evaluating the velocity- (x, t,), approximating the backward
characteristic througk by a straight line

X + (tn+1 - t)F(Xs tn) ~ S(t)s (14)
and interpolating linearly at timet,, to the point
X+ kF(x, tn) ~ s(tp). (15)

Theng(X, th11) is set equal to the interpolated value.

General semi-Lagrangian time stepping schemes are built along similar lines with higt
order accurate time stepping and interpolation and are widely used in atmospheric sci
[15, 14].

3.2. Convergence

For linear PDEs, the Lax—Richtmyer equivalence theorem [6] guarantees that CIR \
converge to the exact solution lsh — 0 if it is stable and consistent. Stability is uncon-
ditionally guaranteed since each new vajyg, t,. 1) is a single linearly interpolated value
of ¢ at timet,.

Consistency, however, is conditional. The truncation error of CIR is

h2
t=o<k)+owx (16)

due to theO(h?) error in linear interpolation ove®©(1/k) steps plus theé (k) due to
freezingF and approximating the characteristics by straight lines. Thus CIR is consist
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to O(k) if a condition likek > O(h) is satisfied, contrary to the usual hyperbolic conditior
k < Ch. This condition is extremely convenient, becakise O (h) balances time and space
resolution in this first-order accurate scheme.

CIR converges for Lipschitz solutions of nonlinear PDEs but moves shock solutions
conservation laws at the wrong speed because CIR is not in conservation form. Thus s
Lagrangian schemes such as CIR have been applied mainly to problems in atmospl
science where shocks are absent. Since level set equations have no shocks, CIR isan
scheme for moving interfaces.

3.3. Semi-Lagrangian Level Set Methods

The semi-Lagrangian CIR scheme was applied to level set equations in [19], yield
semi-Lagrangian level set methods on a uniform mesh. Convergence was heuristic
discussed and experimentally verified for many moving interface problems involving p
sive transport, geometry, dynamic topology, faceting, and curvature. Convergence of tl
methods is straightforward for passive transport and first-order geometry where the I
set equation is hyperbolic. For parabolic problems such as curvature flows, the main i
is the Courant—Friedrichs—Lewy (CFL) condition which restricts the time step of most ¢
plicit methods byk < O(h?) to ensure information propagates correctly. Semi-Lagrangie
level set methods are unconditionally stable and can satisfy the CFL condition by nor
cal velocity evaluation, permitting convergence with large time skep<(h) even for
parabolic problems. While their convergence theory is still in progress, the combinat
of experimental evidence with the following heuristics indicates that these methods
converge correctly.

The domain of dependence of the CIR solutigx, t,, 1) obviously includes the single
interpolation poins = x + kF (X, t;) and its stencil, but the poimstin turn depends on the
¢ values used to compute the extended veloEity, t,). Thus the CFL condition can be
satisfied in principle by computing nonlocally with arbitrarily large time steps. A specific
nonlocal technique which satisfies the CFL condition is to postprocess the velocity field
smoothing or averaging it over a sufficiently large stencil. Accuracy can be maintained
increasing stencil size only logarithmicallylas> 0. In practice, a few passes of smoothing
produces convergent solutions even though curvature flow velocities give parabolic le
set equations, for which explicit schemes usually regkieO (h?).

Redistancing and velocity extension techniques also implement long-distance infor
tion transfer and help satisfy the CFL condition. While these techniques propagate in
mation primarily normal to the interface, their influence is enhanced in regions of hi
curvature because normal vectors cross near the interface.

4. QUADTREE MESHES

Moving interfaces by solving the level set equation differs from solving general PDI
because we need to resolve the solutioonly near its zero set. Quadtree meshes coarse
rapidly away fromI'(t) to resolve the interface with optimal efficiency and eliminate the
cost of going up a dimension. In this section, we review standard properties of quad
meshes. We define, build, and triangulate quadtree meshes in Subsection 4.1, then spec
in Subsection 4.2 to develop some useful properties of quadtree meshes built to reso
given interfacd".
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4.1. Quadtree Meshes
4.1.1. Definition

A quadtree meshovering the cube [0, 1]in RY is composed of square cells organized
into levels, with each cell on levéH- 1 contained in some levéleell. A quadtree mesh
built to resolve a given functiop on [0, 1F stores the following information:

The root cellCy =[0, 1]¢, which occupies level=0.

A maximum depth. > 0.

A cell list of cells, grouped by level.

A vertex listof cell vertices (corners), without repetitions.
A vertex value listf ¢ values at cell vertices.

Other application-dependent data.

Each cellC in the cell list contains:

e Its levell and corner vertexis, . .., ig): the cell covers the box2[iy, iy + 1] x
- X [ig,ig + 1]

e The indices in the vertex list of thé! 2ell vertices.

e The index in the cell list of its parent (if there is one).

e The indices in the cell list of its children (if there are any).

e Other application-dependent data.

An example is shown in Fig. 4 and Table I. Given ladevel quadtree, many operations
related to searching and sorting can be done efficiently. Finding the tree cell where a p
X lies, for example, require®(L) checks of bits in the binary representatiorxof

4.1.2. Building the Quadtree

To build a quadtree, start with a root cell at lelvel 0. Test whether it needs splitting into
29 children on level + 1. Thesplitting criteriondistinguishes one quadtree from another
and must be specified to suit the application. If a cell needs splitting, some bookkeey
must be done—creating new vertices, adjusting familial pointers, and so forth—and
values ofy at new vertices must be found. Then the children are tested, split if necess:
and the process repeats recursively. The build terminates when no cell abovertegyeires
splitting.

TABLE |
Stored Information for the Quadtree of Fig. 4

Cell Children Parent \ertices
C0 Cl» Cz, Cg, C4 - VOs Vl’ V27 V3
C Cs, Cs, C7, Cq Co Vo, Vs, Vs, Vg
C, — Co Vi, Vi, Vg, Ve
C3 - C0 V5, VB’ V27 V7
C, — Co Vs, V6, V7, V3
Cs — C Vo, Ve, Vio, Viz
CG - Cl Vg, VA’ V13, Vll
C7 - Cl VlOv V131 V57 VS

CB - Cl Vl3v Vlla V12s V8
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V3

FIG. 4. Levels0, 1, and 2 of a tree structure with célisand vertices/;.

V2
Co
Vo V1
V7
C3 C4
\E V6
c1 C2
\Z}
V12
Vi —CT—C8
Cs_—C6
V9

4.2. Properties

This paper uses three different quadtrees, each built to resolve some inténfete
some version of the following splitting criterion:

Split any cell whose edge length exceeds its minimum distanEe to  (17)

Variants of this criterion determine the quadtree mesh at each time step, initialize the leve
functiong and redistance at each step. This splitting criterion is one ingredient in the fas
redistancing algorithm of [18], which we use in Section 5. The other ingredient is an efficit
guaranteed-correct search strategy which uses a quadtree mesh to find nearest points
Infinite quadtrees built with Criterion (17) are known as Whitney decompositions and us

to solve extension problems in harmonic analysis [16].
If ¢ is the signed distance 0, then the values op stored at cell vertices make this

criterion extremely simple to implement. Figure 5 shows the cells in a quadtree for a sim

interface. In general, Criterion (17) builds quadtrees with several useful properties:

o Adjacent cells differ in size by no more than a factor of 2, producing a smooth me

and simplifying procedures such as neighbor finding and triangulation of the vertices.
e Acell’s size is proportional to its distance Io
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FIG.5. The eight-level quadtree mesh built around the hexagonal zero set of Fig. 2.

o If ¢ is the signed distance 0 at vertices and we extengd into each cell byd-
linear interpolation, then—because cells vary in sizewill be discontinuous; see Fig. 6.
However, the jumps ip decrease in size in cells close to the interface because of the trian
inequality. Thus the interpolatedis close to continuous neér.

FIG. 6. The piecewise bilinear interpolaptto the signed distance function on the eight-level quadtree mes
of Fig. 6.
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e Cells coarsen very rapidly away from the interface: if there Mrehildless cells
touchingl’, then the entire tree contains or®(N) cells. Hencd" is resolved accurately
at minimal cost.

5. TREE METHODS FOR MOVING INTERFACES

We develop tree methods which move interfaces by combining the following ideas:

o Topological changes require the solution of the level set equation only locally ne
the interface, not globally in space.

o The interface can be accurately resolved at optimal cost by a quadtree mesh.

o Semi-Lagrangian time stepping schemes such as CIR decouple time steps f
CFL conditions, permitting time steps determined by resolution requirements rather tl
numerical stability.

o Semi-Lagrangian schemes decouple mesh points into independent computati
permitting adaptive refinement without iteration.

o Withfrequentredistancing, the solutigrof the level set equation is close to a signed
distance function at all times, giving a natural splitting criterion for building a quadtree me
and making error estimation unnecessary.

The combination of these ideas yields a family of adaptive methods. We summarize
family, identify the options which parametrize it, and discuss them in detail below.

In Subsection 5.1, we initialize the solutignof the level set equation: given an initial
interfacel’ =T"(0), we build a quadtre€y and an approximate signed distance functior
o 0on Qg which resolved" to specified accuracyin almost optimal time and space.

After initializing, we evolve the interface one step at a time. Optionaligay be redis-
tanced before the time step, as discussed in Subsection 5.2. Given a q@agdteselving
the zero seff,, of g, ~ ¢(tn), and an extended velocify, equal to the vector normal velocity
V NonT}, we build a quadtre®,; to resolve the zero sé&t,, ; of the CIR approximation

@n1(X) = on(X + KFy(X)). (18)

Computingen. 1 involves four procedures: extension, resolution, interpolation, and app
cation of boundary conditions.

Extension. Extend the vector normal velocity N off the interface to a global function
Fn(x) on the meshQ,. This extension problem can be solved in general or tailored to
specific moving interface problem. We discuss some specific techniques for passive tr
port and geometry in Subsection 5.3: local and global extensions, smoothing, truncat
interpolation, and differentiation on uniform and adaptive meshes. A general extens
technique is developed in [20].

Resolution. Apply the splitting criterion of Subsection 5.4: form a quadt@g ; re-
solving the zero sef|,,; of the CIR approximatiorp, 1 from Eq. (18) to specified ac-
curacye.

Interpolation. At off-mesh points = x + k F,(X), our interpolation strategy determines
stability as well as accuracy and is detailed in Subsection 5.5.

Boundary conditions. Numerical boundary conditions are straightforward and discuss
in Subsection 5.6.



628 JOHN STRAIN

5.1. Initialization

A moving interface computation begins with the initial interfdée=I"(0), while the
level set equation requires an initial level set functign= ¢(0) with zero setl’y. The
signed distance function

D(x) = minlx - y| (19)
ye

is prohibitively expensive to compute directly: If

N
r=Jn, nal
i=1

is a polygonal curve ifR?, then evaluating

D(x) = :I:m,\%n min X — ||
i=1 ye[y.yl
costsO(N) work per evaluation. We initializg, efficiently by building a quadtre®, with
Criterion (17), settingpg = D at the vertices 0fQy and on cells touchind’y, and inter-
polatinggyg linearly on cells not touching.

As noted in Subsection 4.2, this splitting criterion produces a mesh which coarsen:
rapidly away fromI" that if there areN cells touchind’, then the entire mesh contains only
O(N) cells. Thusifi" hasN elements, then direct evaluation of all the quadtree vertex valu
costs onlyO(N?) work, much less than th® (N9+1) for evaluatingy on a uniform mesh in
d dimensions. Fastéd (N log N) redistancing algorithms are discussed in Subsection 5.

5.2. Redistancing

Moving interfaces by solving the level set equation differs from solving a general PD
because we can ignore all valuesedfr from the zero set. In particular, we can replace the
solution at any time by an approximate signed distance with the same zero set.

Frequent redistancing improves numerical accuracy. Figure 7¢pfotsa circle growing
with unit normal velocityv = 1, computed by the method of [19]. The solutipsatisfies a
maximum principle, so maxima can never increase. However, this also leads to flattenin
the level set functionv ¢ may become small near the interface, causing level sets to broac
into regions or become difficult to contour. Redistancing cures flattening completely &
reestablishes a clean intersection betweernytlseirface and any horizontal plane. Also,
redistancing eliminates numerical effects due to artificial boundaries.

Redistancing is equivalent to initialization onEds found, and many contouring tech-
nigues which find" are available. The simplest technique splits each cell into two triangle
finds the exact zero segment of the linear interpolant tm each triangle, then joins the
segments to form the interface. The choice of cell splitting direction makes this conto
ing technique anisotropic and helps indicate errors: underresolved computations can s
error by displaying a directional bias.

A fast algorithm which computes an approximate signed distagcat the quadtree
vertices inO(N log N) work was developed in [18]. It uses an efficient search stratec
to compute the minimum distance from all vertices of the quadtrelé &md runs fast
enough to redistance at every time step. Other fast redistancing algorithms apply the eik
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equation [21] and heapsort techniques [1], primarily on a uniform mesh. A polygor
interface made oN line segments has a “Voronoi diagram” which can be computed |
O(N log N) time [26] and solves the redistancing problem exactly. However, the constz
in O(N log N) is large and the algorithm is complex to program. A simpler structure calle
the compact Voronoi diagram may lead to faster redistancing algorithms [7], though
present no implementation is available.

5.3. Extension

Level set methods require a globally defined velo€itwhich extendd/ N smoothly off
the interfacd™(t). Many ad hoc velocity extensions for specific problems are described
[12], while general extension techniques are developed in [1, 20, 21].

Our tree methods also require velocity extension. The test problems solved in Sectic
have natural velocity extensions: for passive transpastgiven, while geometric velocities
such as

F = (R+ e cosK0 + 60))N + (R + €' cogK'0 + 6))CN (20)

can be evaluated by the natural geometric formiNas Vo /||Vg| andC =—V - N. For
more general problems, we plan to incorporate the general extension of [20].

Naturally extended geometric velocities produce two numerical difficulties. First, tl
exact solutiory is not differentiable when facets or corners develdp vanishes at extrema
soN andC are not defined there, and redistancing on a quadtree introduces discontinu
as well. Our approximate signed distance function is discontinuous when cells change
though the jumps decrease steadily in size as we appidach

The second difficulty is the CFL condition, which requires small time skepsO(h?)
in almost all explicit schemes for parabolic level set equations such as curvature flow.
CIR scheme on a uniform mesh converges with a much more efficient timé& st€p(h)
provided that the CFL condition is satisfied by smoothing the velocity and redistanfrieg
quently [19]. Hence convergence for curvature-dependent velocities will require smooth
and frequent redistancing.

We have developed both cell-based and grid-based schemes for evaluating geometr
locities. Cell-based schemes are fast and work well for problems with first-prderiva-
tives, while grid-based schemes are slower, more general, and work well for curvatt
dependent velocities. We describe these approaches below.

5.3.1. Cell-Based Velocity Evaluation

The cell-based approach computes geometric velodii€s) locally at each new tree
vertexx in Qny1. Suppos« lies in a cellC of the old quadtre®,,. Then we can form the
bilinear interpolanB to the vertex values af and approximat&¢ by VB onC. Second
derivatives can be computed by iterating the interpolation, or by using the biquadre
interpolantQ to the niney values at vertices of and its siblingsQ raises the order of
accuracy by one but doubles the cell size and introduces a stability issue: for linear cons
coefficient problems in one space dimension, CIR is unstable with quadratic interpolati

We can vary this technique by computing the velocity at all vertices of the old quadtt
Qn and interpolating it to the new tree vertices. Smoothing techniques can then be app
because the velocity is computed on the whole quadtree rather than piecemeal and p
more effective solution of parabolic problems.
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5.3.2. Grid-Based Velocity Evaluation

We can evaluate geometric velocities with an auxiliary grid by the following procedur
build a uniform 2 x 2% grid matching the smallest cell in the quadtree. Interpojate
to the uniform grid by the cell-based bilinear interpolation of Subsection 5.5.1, which
exact at vertices shared by the quadtree and the uniform grid. Apply the standard grid-b:
techniques of smoothing and differentiatingruncating and smoothing on the grid, asin
the geometric velocity evaluation of [19]. Finally, restricto the quadtree vertices, which
form a subset of the uniform grid. This approach is powerful and general, but costly bece
of the uniform grid. However, the cost can be reduced by masking off unneeded areas

5.4. Resolution

At each step, our methods build a quadtree mesh to resolve the CIR approximation

On1(X) = on(X + KRy (X)) (21)

to the level set functiop(x, t,.1). The quadtree is built recursively from the root cgjl
by the following splitting criterion:

Split every cell wheregpn 1] is larger than the edge length. (22)

Thus we apply the splitting criterion (17) asuf ; were a distance function. Redistancing
at every step keeps

¢n+1(X) =@n + KF - Voo + 0(K) = ¢n + O(K) (23)

within O(k) of the signed distance functign,. Thus in the limitk = O(h) — 0, Criterion
(22) reduces to (17), yielding the properties noted in Subsection 4.2.

5.5. Interpolation

The CIR scheme requires interpolatedalues at the projected poins= X + kF,(X).
Many general interpolation techniques are available, but our choice is restricted by
irregularity of the quadtre®, and by two requirements. First, the level set functjois
only Lipschitz continuous in general since faceting may occur. Thus high-order meth
which require smooth data should be avoided. Second, stability of the semi-Lagrang
approach in any given norm is guaranteed only for interpolation schemes which do
increase the norm too much. For example, linear interpolation was used in [19] to guaral
unconditional max-norm stability. Similarly, shape-preserving interpolation [10] was us
in [24] and monotone advection in [14].

Given these two requirements and a quadtree mesh, two obvious classes of interpol
techniques are available: cell-based and triangulation-based. Both become locally exa
settingp equal toD nearT (t).

5.5.1. Cell Interpolation

Here we use the square cells of the quadtree to interpolate from vertex valges o
Bilinear interpolation to a pointx, y) = (Xo + «h, yo + gh) in a cellC evaluates

(1—-a)— B)eoo+ a(l— Beio+ (1 — a)Beor + a1, (24)
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where the vertex values f@ are given bypi; = ¢(xo+ih, yo+ jh). Bilinear interpolation
preserves the maximum principle of the CIR scheme and yields local second-order accu
with global first-order erro© (k + h) after O(1/k) time steps.

Biguadratic cell interpolation requires nipevalues while a celC has only four vertices.
Hence givenxinachildless cell, we can ascend one level to interpolate from the nine vertic
of C and its siblings. This gains an order of accuracy but doubles the mesh size and sacri
the maximum principle.

5.5.2. Triangle Interpolation

We can also interpolate by triangulating the vertices of the quadtree and building the c
tinuous piecewise-linear interpolantgaat the vertices. As in [3], we can add one Steinel
vertex at the center of each cell and connect the vertices to form a high-quality triangula
in only O(N) work. The center values @f may be evaluated exactly or interpolated from
vertices.

5.5.3. Exact Interpolation

A third alternative uses the quadtree to evaluate the signed distafgei@ctly, elimi-
nates interpolation entirely, and is discussed in [20].

5.6. Boundary Conditions

The CIR scheme requires numerical boundary conditions to specify valuessdr)
whens lies outside the domaib covered by the grid.

There are two simple boundary conditions: extension and projection. In extension,
extendy as a constant or linear function along lines normal to the bouritlarthen apply
our standard interpolation scheme to interpolate the extended valsids farojection, we
arrests as it leaves the domain and use one-sided interpolation to the point s/bergses
aD. Our tree methods use projection because it is simple and effective.

6. NUMERICAL RESULTS

We validate our tree methods by computing a variety of interfaces moving under pas:
transport and geometric motions, with corners, anisotropy, nontrivial topology, and cur
ture. (Some PDE-type examples with a general velocity extension will be treated in fut
work [20].) Our methods were implemented in Standard C, compiled with the SunSoff
compiler and the-fast optimization flag, and run on one CPU of a 2-CPU 200 MHz Sul
Ultra-2 under Solaris 2.6.

6.1. Passive Transport

Passive transport problems whdré) moves with a globally defined velocitly (x, t)
constitute convenient test cases for moving interface methods, because complex exas
lutions can easily be evaluated. Thus we can measure the error and rate of convergenc
carry out convergence studies for three passive transport problems and verify the accu
robustness, and conservation properties of tree methods.
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111

FIG. 8. A collection of bubbles moving with linear shearing velocity.

6.1.1. Bubbles in a Shear Flow

We measure the accuracy of our methods on a collection of circular bubbles (Fig.
moving with a divergence-free linear shearing velocity

1 1
F(x,y)=§<x—3y+1,—y—§>. (25)

We use 1020, ..., 320 time steps on 8t <1 on a quadtree with 5 through 9 levels on
[-5, 5] x [-5, 5]. Table Il reports the maximum of the exact distance function on the cor
puted contour at time= 1. First-order accuracy is clearly evident along diagonals, whel
h = O(k). This agrees with the consistency condition of Subsection 3.2. The error decrez
considerably when we change from bilinear to biquadratic cell interpolation, indicating tt
the error is largely due to spatial discretization.
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TABLE Il

Grid levels Ny =10 20 40 80 160 320

Linear interpolation

5 0.276 0.139 0.631 0.96 0.36 0.567

6 0.0413 0.169 0.253 0.135 0.176 0.457

7 0.031 0.027 0.0986 0.194 0.269 0.209

8 0.0449 0.0148 0.0143 0.054 0.112 0.222

9 0.0479 0.0221 0.00686 0.0102 0.0384 0.0831

Quadratic interpolation

5 0.0423 0.12 0.283 0.345 0.338 0.341

6 0.0398 0.0267 0.0351 0.0518 0.0378 0.0352
7 0.0468 0.0227 0.00982 0.0128 0.0208 0.0239
8 0.0486 0.0236 0.0116 0.00565 0.00145 0.00396
9 0.0489 0.0241 0.0118 0.00593 0.00298 0.00118

Note.Maximum error att =1 in the interface shown in Fig. 8, moving with divergence-free linear shearin
velocity F(x, y) = %(x -3y+1-y-— %), computed withN; time steps of linear and quadratic interpolation.
The domain is {6, 6]2.

6.1.2. Grid Effects on Triangles

A common difficulty in moving interfaces is sensitive dependence on numerical artifa
such as grid orientation. We check for grid effects in passive transport of a sharply face
interface by revolving, shrinking, and expanding a triangle with a linear velocity field. In e
cases, each facet moves with the appropriate speed independently of its orientation rel
to the grid. Figure 9 plots the results with both bilinear and biquadratic cell interpolatit
on the domain {2, 2]? and shows that grid effects are minimal. Each plot demonstrat
convergence by superimposing three runs with 40, 80, and 160 time steps on a qua
with 5, 6, and 7 levels.

6.1.3. Mass Conservation in a Shear Flow

We conclude our study of passive transport by measuring mass conservation in a collec
of bubbles moving in the divergence-free shearing flow given by

max(1— (1 —x2—y?4%,0)
Fooy= 80C 1 )

(=Y, X). (26)

Figure 10 shows the extreme distortion produced by this flow, computed with 160 time st
on 0<t < 100 and bilinear interpolation on a 9-level quadtree on the domzng]?. This
mesh resolveE () as accurately as a 532512 uniform mesh, at far less cost. Despite this
distortion, mass is well conserved; the final area inside the computed interface is 12.7
close to the exact value ofrd= 12.5664.

6.2. Geometry

We validate our methods by computing converged solutions to a variety of geome
moving interface problems including viscosity solutions to corners moving with unit norm
velocity, the faceted Wulff limit for anisotropic normal velocity fields, complex topologica
changes under anisotropic curvature-dependent flows, and nonconvex shapes shrinki
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FIG. 9. Tests of grid effects in sharp corners with linear velocity field. (a) A rotating triangle at a half peric
and a full period, computed with bilinear cell interpolation. (b) A triangle shrinking Witk, y) = — g (X, y) from
t=0tot =1. (c) A triangle expanding witW (x, y) =2(x, y) fromt =0 tot = 1. Plots (d) through (f) show the
same calculation with biquadratic cell interpolation.
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FIG. 10. A collection of circular bubbles passively transported by a divergence-free shearing velocity.

round points under flow by curvature. These are among the most important tests of ger
moving interface methods.

6.2.1. Unit Normal Velocity

We verify first-order accuracy on a unit circle centeredg®s, 1/2) with unit normal
velocity, extended naturally via Eq. (6) with singularities truncated;

Vo

= . 27
max(10-8, [[Vel)) @7)
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FIG. 11. Viscosity solutions for triangles moving with positive or negative unit normal velocity, compute
with bilinear cell interpolation: (a) An expanding triangle at zero angle to the mesh, with round corners. (b)
expanding triangle at angle 0.2 radians to the mesh, with round corners. (c) A shrinking triangle at angle
radians to the mesh, with sharp corners. Plots (d) through (f) show the same computations with biquadratic

interpolation. Each plot demonstrates convergence by superimposing three runs with 40, 80, and 160 time
on tree meshes with 6, 7, and 8 levels.
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Table Il reports the maximum of the exact distance function on the computed contoul
timet =1, with 10 20, ..., 160 time steps on €t <1 and quadtrees with 5 through 9
levels on [-3, 3]2. Bilinear and biquadratic interpolation are used ganterpolation and
the cell-based evaluation &f. High accuracy is evident along diagonals, whete O (k),
because the exact interface is a linear functiot of

6.2.2. Viscosity Solutions with Corners

Correct computation of “viscosity solutions” for faceted interfaces in geometric probler
depends on moving a corner in or out with unit normal velocity [12]. Inward motion shou
keep corners sharp (the “shock” case), while outward motion should produce roun
corners due to Huygens’ principle (the “rarefaction” case). Figure 11 shows a trian
moving with positive and negative unit normal velocity, both aligned with the mesh and
an angle to check for grid effects, and demonstrates that tree methods compute the cc
viscosity solution in each case.

: N\

L)

d

FIG.12. Acollection of randomly located, sized, and oriented trefoils growing and merging under unit norrr
velocity V = 1. Here (a) is the initial interface on a 6-level tree mesh, (b) plots every 8th step of 80 time ste
and (c) shows the final 6-level mesh. Plots (d)—(f) show 7 levels and 160 steps, while (g)—(i) show an accurz
converged result with 8 levels and 320 steps.
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FIG. 12—Continued
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c l d I
FIG. 13. Wulff shapes growing from circular initial interfaces (with radiy2%nd center atl/2r, 1/27)).
Here we used 160 time steps or® < 1 and cell-based bilinear interpolation on an 8-level tree mesh coverin

[-3, 3.
a. O
c. '

FIG. 14. Wulff shapes developing from nonconvex initial interfaces givem by0.4 + 0.2 cog5¢) in polar

coordinatedr, &) centered atl/2r, 1/27). Here we used 160 time steps orc®<1 and cell-based bilinear
interpolation on an 8-level tree mesh coveringd[ 3]°.



TREE METHODS FOR MOVING INTERFACES 641

FIG.15. Acollectionofrandomly located, sized, and oriented trefoils growing and merging under a noncon
anisotropic normal velocity =2 + cog360 + 0.3). We used biquadratic cell interpolation with (a) 80 time steps
on a 6-level tree mesh, (b) 160 steps on a 7-level mesh, and (c) 320 steps on a 8-level mesh, to achieve conve
to graphical accuracy.
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FIG. 16. Convergence of two circles collapsing under curvature flow C, computed front=0tot =2
with (a) 20 time steps on 5-level tree mesh covering,[5]? with 1 smoothing pass per step, superimposed on

40 steps on 6-level mesh with 2 passes, (b) 80 steps on 7-level mesh with 3 passes, superimposed on 160 s
8-level mesh with 4 passes.

Figure 12 shows a complex interface growing and merging with unit normal velocity al
exhibits the simplicity of the level set approach to topological complexity. The manifo
corners and changes of topology are computed automatically and easily. In partict
outward-moving inward-pointing corners remain correctly sharp, as the viscosity solut
theory requires. The final area enclosed by the computed interface is 72.77, 73.15, and 7
on the three runs shown, indicating smooth monotone convergence. The initial and f
guadtrees are shown to demonstrate the extreme concentration of computational effort

the moving interface. An 8-level mesh resolves the interface as accurately as<e2866
uniform mesh at far less cost.

TABLE 11l
Grid levels Ny =10 20 40 80 160
Linear interpolation
5 0.0307 0.0436 0.0505 0.054 0.0557
6 0.00647 0.0153 0.0215 0.0249 0.029
7 0.00135 0.00333 0.00981 0.0133 0.0155
8 0.000506 0.000707 0.00201 0.00675 0.00938
9 0.000123 0.00026 0.000447 0.00155 0.00505
Quadratic interpolation
5 0.00176 0.00199 0.00223 0.00234 0.00242
6 0.000377 0.000626 0.000754 0.000819 0.000858
7 0.0000754 0.000128 0.000198 0.000239 0.000263
8 0.0000128 0.0000701 0.0000206 0.0000386 0.000051
9 0.00000401 0.00000402 0.00000256 0.00000562 0.0000097

Note.Maximum of exact distance function& 1 on a circle of radiufk(t) = 1+t and centefl/2x, 1/27),
moving with constant normal velocity = 1, computed witiN; time steps of linear and quadratic interpolation.
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6.2.3. Anisotropic Normal Velocity and the Wulff Limit

Anisotropic motion along the normal connects moving interfaces to the theory
Hamilton—Jacobi equations

¢+ H(Ve)=0 (28)

which encounters difficulties when the Hamiltonidns nonconvex. For anisotropic normal
velocities

V =R+ecogkd), costd=e,/lIVol, (29)
the Hamiltonian is nonconvex if
R+e(1—-k? <0< R—|el, (30)

causing some Hamilton—Jacobi methods to break down.
In Fig. 13, we evolve aninitially circular interface under several anisotropic normal velo
ties producing nonconvex Hamiltonians, with constants chosen tokeep(1 — k?) = —4.

FIG. 18. Nonconvex shapes merging under curvature-dependent anisotropid/fle®+ cog36 + 0.3)
+ ¢C. Convergence to the viscosity solution@as— 0 is demonstrated with =1 (a—c), 0.1 (d—f), and 0.01
(g—i). Figure 15 shows the limit cage=0.
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FIG. 18—Continued

The interface converges rapidly to the correctly tilted “Wulff shape” [25] correspondir
to each given anisotropy, as predicted by rigorous theory [8]. In Fig. 14, we begin witl
highly nonconvex initial interface to test our methods even more severely. The asympt
Wulff shape is still computed accurately.
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6.2.4. Merging under Anisotropy

Starting from a collection of randomly placed, sized, and oriented trefoil shapes, we m
the interface along its normal with a threefold anisotropic spée€d?2 + cog36 + 0.3),
wheref is the angle between the normal vector and the positiegis. Figure 15 shows
the mechanism which transforms this highly nonconvex initial interface into the asymptc
triangular Wulff shape as— oo.

6.2.5. Circles Shrinking under Curvature

A classic geometric problem shrinks a plane curve with velocity equal to its curvatt
and forms a useful test case for curvature-dependent velocity. A circle shrinking w
V = C has exact radiuR(t) = v/R(0)2 — 2t, so with R(0) = /5, a circle should shrink to
radius 1 at time& = 2. A smaller circle withR(0) = 1 vanishes completely in time=1/2.
Figure 16 shows convergence to graphical accuracy, computed with 20, 40, 80, 160 f
steps on quadtrees with 5 through 8 levels and plotted every 0.2 or 0.1 time units. -
final computed area of the large circle is 2.518, 2.849, 3.007, and 3.088, showing a sm
first-order convergence to the exact area

For this parabolic problem, we use grid-based velocity evaluation with redistancing ev
step to satisfy the CFL condition and obtain convergence with large time lstefg3(h).
We applyL — 4 passes of cosine smoothing on théevel mesh computation.

6.2.6. Nonconvex Interfaces under Curvature

A geometric theorem [4] predicts that any smooth embedded plane curve should colle
to a round point and vanish in finite time under curvature fiow: C. We verify that tree
methods behave correctly for a collection of randomly placed, sized and oriented noncor
trefoil shapes, with the converged calculation shown in Fig. 17.

6.2.7. Merging under Anisotropy Plus Curvature

Finally, we validate our methods by computing the viscosity limit for a complex interfac
evolving through merging, fill-in, and faceting. Beginning as in Fig. 15, we nittgwith
a curvature-smoothed velocity

V =2+ o539 + 0.3) + ¢C. (31)

We illustrate the viscosity limié — 0 computationally withke =1, 0.1, and 0.01. For each
value ofe, we carry out a numerical convergence study with grid-based velocity evaluatic
redistancing and smoothing at each step. Figure 18 shows rapid convergence to the re
computed in Fig. 15.

7. CONCLUSION

We have described and validated new adaptive numerical methods for moving interfa
which combine the level set equation, the semi-Lagrangian CIR time stepping scheme,
guadtree meshes. Our tree methods resolve and move complex interfaces at optima
with time steps unconstrained by numerical stability. They form key components of “blac
box” methods for moving interfaces, which accept the interface and its velocity at tim
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and return the evolved interface one time step later. Such methods simplify the solutio
moving interface problems, because the moving interface numerics are independent o
physical problem driving the interfacial motion.

Numerical results show that tree methods converge to correct viscosity solutions ever
difficult moving interface problems involving merging, faceting, transport, and anisotrof
curvature-dependent geometry. Large time steps can be taken even for parabolic probil
with the aid of frequent redistancing and velocity smoothing.

Planned future developments include

o further investigation of CFL conditions for parabolic problems,

o higher-order accurate time stepping,

e completely modular moving interface methods [20], and

e applications to industrial crystal growth problems, where the moving interface
coupled to complex materials science.
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